Reg. No. :	1000		10 32	n e	in a	ordi	4.0	4			NAC.
------------	------	--	-------	-----	------	------	-----	---	--	--	------

Question Paper Code: 90822

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2022.

Fifth Semester

Computer Science and Engineering

MA 8551 — ALGEBRA AND NUMBER THEORY

(Common to Computer and Communication Engineering/ Information Technology)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

PART A — $(10 \times 2 = 20 \text{ marks})$

1. (a) Choose the correct option:

Which of the following set is/are group under (+, .)

- (i) Set of all real numbers (R)
- (ii) \mathbb{N} set of natural number \mathbb{N} \mathbb{N}
- (iii) Set of all integer (z)
- (iv) All of the above
- (b) True (or) False: Every subgroup of a cyclic group is cyclic.
- 2. If \mathbb{R} has no proper divisors of zero. Then \mathbb{R} is called
 - (a) Field

(b) integral domain

(c) group

- (d) none of these
- 3. Define Root of polynomial.
- 4. Define relatively prime.
- 5. Find the number of positive ≤ 2076 and divisible by neither 4 nor 5.

- 6. Express 10110_{two} in base ten.
- 7. Prove that no prime of the form 4n+3 can be expressed as the sum of two squares.
- 8. Solve the linear system $x \equiv 1 \pmod{3}$, $x \equiv 2 \pmod{4}$, $x \equiv 3 \pmod{5}$.
- 9. Statement only: Fermat's little theorem.
- 10. Define Euler phi function.

PART B —
$$(5 \times 16 = 80 \text{ marks})$$

- 11. (a) For every group G, prove that the following statements.
 - (i) the identity of G is unique.
 - (ii) the inverse of each element of G is unique.
 - (iii) if $a, b, c \in G$ and ab = ac then b = c. (Left cancellation property)
 - (iv) if $a,b,c \in G$ and ba = ca, then b = c. (Right cancellation property) (16)

Or Or

- (b) (i) State and prove the Lagrange's theorem. (8)
 - (ii) Given a ring (R,+,.) for all $a,b \in R$, prove that the following statements
 - $(1) \quad -(-a)=a\,,$
 - (2) a(-b) = (-a)b = -(ab), and
 - $(3) \quad (-a)(-b) = ab \tag{8}$
- 12. (a) (i) If $f(x) = 3x^2 + 4x + 2$ and $g(x) = 6x^4 + 4x^3 + 5x^2 + 3x + 1$ are polynomial in $Z_7[x]$, Find finite field. (8)
 - (ii) If $f(x) \in F[x]$ has degree $n \ge 1$, then prove that f(x) has at most n roots in F.

Or

- (b) (i) Prove that a finite field F has order p^t , where p is prime and $t \in \mathbb{Z}^+$. (8)
 - (ii) Let (F,+,.) Be a field. If char(F) > 0, then prove that the char(F) must be prime. (8)

13.	(a)	(i)	Let $(a,b) = d$, then prove the following statements: (8)
			$(1) \qquad \left(\frac{a}{d}, \frac{b}{d}\right) = 1$
			$(2) \qquad (a,a-b)=d$
		(ii)	If $d = (a, b)$ and d' is any common divisor of a and b, then prove that $d' \mid d$. (8)
			\mathbf{Or}
	.(b)	(i)	Let a and b be any positive integers, and r the remainder, when a is divisible by b , then prove $(a,b)=(b,r)$. (8)
		(ii)	Let f_i denote the i^{th} Fermat number then, prove that $f_0f_1f_{n-1}=f_{n-2}$, where $n\geq 1$. (8)
14.	(a)	(i)	If a cock is worth five coins, a hen three coins, and three chicks together one coin, how many cocks, hens, and chicks, totaling 100, can be bought for 100 coins? (8)
		(ii)	State and prove Chinese Remainder theorem. (8)
			Or
	(b)	(i)	Prove: $a \equiv b \pmod{m}$ if and only if a and b leave the same remainder when divided by m . (8)
		(ii)	Find the positive integers n for which $\sum_{k=1}^{n} k!$ is a square. (8)
15.	(a)	(i)	Find the primes p for which $\frac{2^{p-1}-1}{p}$ is a square. (8)
		(ii)	Solve the congruence $24x \equiv 11 \pmod{17}$. (8)
			Or
	(b)	(i)	State and prove: Euler's Theorem and find the remainder 245 ¹⁰⁴⁰ is divided by 18.

(8)

congruence $35x \equiv 47 \pmod{24}$.

(ii)

State and prove: Fermat's Little theorem and solve the linear